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Tunable front interaction and localization of periodically forced waves
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In systems that exhibit a bistability between nonlinear traveling waves and the basic state, pairs of fronts
connecting these two states can form localized wave pulses whose stability depends on the interaction between
the fronts. We investigate wave pulses within the framework of coupled Ginzburg-Landau equations describing
the traveling-wave amplitudes. We find that the introduction of resonant temporal forcing results in atunable
mechanism for stabilizing such wave pulses. In contrast to other localization mechanisms the temporal forcing
can achieve localization by a repulsive as well as by an attractive interaction between the fronts. Systems for
which the results are expected to be relevant include binary-mixture convection and electroconvection in
nematic liquid crystals.
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I. INTRODUCTION

Localized structures have been observed in a range
pattern-forming nonequilibrium systems. One type of loc
ized structure occurs when one pattern is embedded w
another pattern. Examples include the coexisting station
domains of long and short wavelengths observed in Tay
Couette flow between corotating cylinders@1#, in Rayleigh-
Bénard convection in narrow slots@2#, and in parametrically
excited waves in ferrofluids@3#. Solitary waves drifting
through a stationary pattern are found associated wit
parity-breaking bifurcation in directional solidification@4#,
the printer instability @5#, viscous fingering@6#, cellular
flames@7#, and Taylor-vortex flow@8#.

In this paper, we investigate a class of localized state
which the pattern is confined to a small region that is s
rounded by the unpatterned state, or vice versa. For exam
solitary standing waves~termed ‘‘oscillons’’ in @9#! have
been observed in vertically vibrated granular layers and
loidal suspensions@10#. Localized traveling waves have bee
observed as one-dimensional pulses in binary-fluid mixtu
@11–15# and as two-dimensional localized waves~termed
‘‘worms’’ in @16#! in electroconvection of nematic liquid
crystals.

For a general understanding of such structures the me
nisms that are responsible for their localization are of p
ticular interest. A number of different types of localizatio
mechanisms have been identified~e.g., @17#!. To provide a
context for our results we briefly review the main mech
nisms.

The stable coexistence of domains of long and sh
wavelengths can be understood to be due to the instabilit
the constant wave number state combined with the conse
tion of the phase@18–22#. Localized patterns can also b
stabilized by a nonadiabatic pinning of the large-scale en
lope to the underlying small-scale pattern@23,24#. This pin-

*Present address: Department of Mathematics, Elmhurst Coll
190 Prospect Ave., Elmhurst, IL 60126; email addre
crawford@elmhurst.edu
1063-651X/2002/65~6!/066307~11!/$20.00 65 0663
of
-
in
ry
r-

a

in
r-
le,

l-

s

a-
r-

-

rt
of
a-

e-

ning has been suggested as a possible localization me
nism for oscillons@25#.

To understand the traveling-wave pulses in bina
mixture convection, two mechanisms have been put forwa
dispersion@26–28# and the advection of a slowly decayin
concentration mode@29–32#. Within the framework of the
complex Ginzburg-Landau equation with strong dispersi
pulses and holes can be viewed as perturbed bright and
solitons of the nonlinear Schro¨dinger equation@33–35#. For
weak dispersion, pulses have been described as a pa
bound fronts. In the absence of dispersion they are unsta
However, dispersion may result in a repulsive interaction
tween the two fronts and a stable pulse can arise@27,28#.
Similarly, the advected mode modifies the interaction b
tween fronts and can also provide a stabilizing, repuls
interaction. A similar advective mechanism has been invo
@36# to explain the two-dimensional localized waves~worms!
that have been observed in electroconvection in nematic
uid crystals@16#.

More generally, the coupling of a pattern to an addition
undamped~or weakly damped! mode can lead to its localiza
tion @37#. In the drift waves arising from a parity-breakin
bifurcation, the local wave number of the underlying patte
plays the role of the additional mode@38,39#. For the oscil-
lons in vibrated granular media it has been suggested th
coupling of the surface wave to a mode representing the lo
height of the granular layer is important@40#.

For traveling waves it is well known that the extern
application of a resonant temporal forcing excites the co
terpropagating wave@41–43#. A natural question is, there
fore, whether the counterpropagating wave can play a
similar to the various additional modes mentioned above
can thus lead to the localization of the traveling wave into
pulse. Since the temporal forcing is easily controlled ext
nally this localization mechanism would betunable.

In this paper we investigate the effect of time-period
forcing on spatially localized waves that arise in syste
exhibiting a subcritical bifurcation to traveling waves as
for instance, the case in binary-mixture convection. We
pect the results also to be relevant for the worms observe
electroconvection in nematic liquid crystals.

We first consider the effect of forcing on the interaction

e,
:
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CATHERINE CRAWFORD AND HERMANN RIECKE PHYSICAL REVIEW E65 066307
fronts in the absence of other localization mechanisms
show that forcing alone can lead to localized structures. T
localization mechanism can stabilize pulses with either a
pulsive or an attractive interaction. While the interacti
strength between fronts is usually determined by the sys
parameters, forcing allows the strength to be controlled
ternally. To focus on the interaction of the fronts due to t
temporal forcing, we start in Sec. II with two coupled di
persionless Ginzburg-Landau equations and derive evolu
equations for the fronts. In Sec. III we discuss the result
front equations and compare them with numerical calcu
tions. Section IV extends the analysis and discussion to
clude holes and multiple pulses. The combined effect of te
poral forcing and dispersion is investigated in Sec. V a
conclusions are presented in Sec. VI.

II. DERIVATION OF THE FRONT EQUATIONS

Motivated by the pulses observed in binary-mixture co
vection@11–15# and the worms in electroconvection@16# we
consider a subcritical bifurcation to traveling waves in a o
dimensional system that is parametrically forced. To obta
weakly nonlinear description, physical quantities such as
temperatureT of the fluid in the midplane in convection, sa
are expanded in terms of the amplitudesA andB, of the left
and right traveling waves,

T5e1/2H A~x,t !expF i S qcx̃2
ve

2
t̃ D G1B~x,t !expF2 i S qcx̃

1
ve

2
t̃ D G J 1c.c.1~higher2order terms!, e!1, ~1!

where t̃ and x̃ are the fast time and space coordinates. T
amplitudesA andB are allowed to vary on a slow time sca
t and a slow spatial scalex. Due to the external periodic
forcing e2neivet̃ close to twice the Hopf frequency,ve
52(vh1e2V), the expansion~1! is chosen in terms of the
forcing frequency. The forcing excites the oppositely trav
ing waves and breaks the time translation symmetry, res
ing to lowest order in a linear coupling between the tw
wave amplitudes. Using the remaining spatial translation
reflection symmetries of the system, the form of the am
tude equations forA andB can be derived@41–43#. Hence,
we study the following set of coupled Ginzburg-Land
equations as a model describing the system:

] tA52s]xA1e2d2]xxA1mA1cuAu2A2puAu4A2guBu2A

2r uAu2uBu2A2uuBu4A1nB* , ~2!

] tB51s]xB1e2d2]xxB1mB1cuBu2B2puBu4B2guAu2B

2r uAu2uBu2B2uuAu4B1nA* , ~3!

where the forcing coefficientn and the group velocitys are
real. All other coefficients may be complex. However,
focus on the interaction of the fronts due to temporal forci
the front equations are derived for the case in which all of
coefficients are real, i.e., neglecting dispersion and detun
06630
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Nonlinear gradient terms that would also appear in Eqs.~2!
and ~3! to the order considered have also been neglected
order for the bifurcation to be weakly subcritical, the cub
coefficients must be small enough to allow a balance w
the quintic terms.

The bifurcation to spatially extended traveling waves
electroconvection in nematic liquid crystals appears to
supercritical@44#. To explain the observation of worms a
ready below the onset of spatially extended waves, it
been argued that a weakly damped mode is relevant th
advected by the wave@36#. Already below threshold such
mode can lead to the existence of infinitely long worms, i
to convection structures that are narrow in they-direction,
say, and spatially periodic in thex-direction @17,36#. They
are expected to arise in a secondary bifurcation off the s
tially extended traveling waves@45#. Focusing on the dynam
ics of the worms in thex-direction, the head and the tail o
the worms can be considered as leading and trailing fro
that connect the nonlinear state, which is strongly localiz
in the y-direction, with the basic nonconvective state. It
reasonable to expect that Ginzburg-Landau equations f
subcritical bifurcation will capture the qualitative aspects
these structures.

With the usual scalingx5e x̃ complex Ginzburg-Landau
equations are obtained in which the growth termmA is bal-
anced by the diffusive termd]xxA. For group velocities of
order 1 this implies that the terms]xA is inconsistent with
the rest of the equation, i.e., it is oflower order. However, by
considering slower spatial scalesx5e2x̃, the advective term
s]xA is of the same order asmA, and the diffusive term then
appears in the rescaled Eqs.~2! and ~3! as a higher-order
correction ofO(e2) as indicated in Eqs.~2! and ~3! @46#.

We are interested in localized solutions made up of t
bound fronts connecting the basic state with the nonlin
state as sketched in Fig. 1. One contribution to the inter
tion between the fronts arises from their overlap. For la
distances it is small, inducing a weakattractive interaction,
which destabilizes pulses. However, since the diffusion
weak @O(e2)#, resulting in steep fronts inA, the overlap
between the fronts is of higher order ine and the associated
interaction can be ignored. Hence, the interaction betw

FIG. 1. Sketch of a pulse traveling to the right.A is the ampli-
tude of the right-traveling wave. Temporal forcing excites the le
traveling waveB, which grows spatially to the left reaching a max
mum at the trailing front, behind which it decays exponentially.
7-2
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TUNABLE FRONT INTERACTION AND LOCALIZATION . . . PHYSICAL REVIEW E65 066307
the fronts is dominated by the presence of the opposi
traveling wave excited by the periodic forcing. The sm
diffusion coefficient causes internal layers to arise at the
sitions of the fronts. The two bound fronts are then divid
into the five regions sketched in Fig. 1, wherexL andxR give
the positions of the left and right fronts. Within regions I, II
and V the amplitude ofA is constant. Regions II and IV ar
regions of rapid change where the dynamics of the fronts
determined. The internal layers have a widthDx5O(e), im-
plying D x̃5e22Dx5O(e21), which is still large relative to
the critical wavelength of the traveling waves.

We consider the forcing to be small,n5O(e), so that the
corresponding amplitudeB of the left-traveling wave that is
excited by the forcing is of the same order ine. The ampli-
tudes and the parametersm andn are expanded as

A5A01eA11•••, B5eB11•••, ~4!

m5mc1e2m21•••, n5en11•••, ~5!

wheremc523c2/16p is the value of the control paramete
at which a single, noninteracting front is stationary. Form
.mc the nonlinear convective state invades the basic st
In the following derivation we go into a reference fram
moving with the group velocitys. The positionsxR andxL of
the right and left fronts evolve then on a slow time scaleT
5e3t.

Inserting the expansions~4! and ~5! into Eqs.~2! and ~3!
we obtain at leading-order equations forA andB in the outer
regions I, III, and V,

05mcA01cA0
32pA0

5 , ~6!

052s]xB11mcB11n1A02gA0
2B12uA0

4B1 . ~7!

Solving Eq.~6! results inA050 in regions I and V andA0
2

5Ac
2[3c/4p in region III. The corresponding solution t

Eq. ~7! is

B1
j ~x!5

n1

a
A0

j 1K je(a j /2s)x, ~8!

where j corresponds to the regions I, III, and V anda j

52mc1g(A0
j )21u(A0

j )4.
In the inner regions II and IV, the solutions vary on a fa

space scalex/e, which is captured by introducing the inne
coordinatesh5(x2xL)/e and h5(xR2x)/e, respectively.
The spatial derivative then transforms as]x→6]h /e. The
resulting leading-order equations forA andB are

05d2]hhA01mc A01cA0
32pA0

5 , ~9!

0562s]h B1 . ~10!

From Eq.~9! one obtains the left and right front solution

A0~h!5AcA1

2 F11tanhS h

j D G , j5
4

c
Apd2

3
, ~11!
06630
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where Ac
2 and h are defined above. Equation~10! implies

that B1 does not depend on the fast space variableh, i.e.,
B15Bc

I, IV , is constant in regions II and IV. AtO(e), no
inhomogeneity arises in the equation forA1, which is, there-
fore, taken to be identically 0. But atO(e2) the following
equation forA2 is obtained:

LA257
dxL,R

dT
]hA02m2A01gB1

2A01rA0
3B1

22n1B1 ,

~12!

whereL5d2]hh1mc13cA0
225pA0

4 is the linearized opera
tor. It is singular and has the zero-eigenmode]h A0, which
leads to a solvability condition for Eq.~12!. The result of
projecting Eq.~12! onto the zero eigenmode determines t
velocity of the fronts in regions II and IV,

6
dxL,R

dT
5F22mc1~2g1Ac

2r !~Bc
II, IV !22

4n1Bc
II, IV

Ac
Gj

~13!

with Bc
II, IV yet undetermined.

Since B is generated byA, we consider the case wher
B50 ahead of the pulse~i.e., for a right-traveling pulse re
gion V whereA[0). This implies thatKV50 from Eq.~8!.
Now matching the inner and outer solutions forB at the left
and right positions (xL andxR) of the fronts, one obtains the
constant valuesBc

II5(n1Ac /a)@12exp(2aL/2s)# and Bc
IV

50. The constantsK I andK III are nonzero and we see from
Eq. ~8! that B grows spatially to the left in region III and
approaches the limiting valuen1Ac /a. Then, in region I, in
which A again equals 0,B decays exponentially to zero. Th
individual front velocities are given by substituting the va
ues ofBc

II,IV into the expressions given in Eq.~13!

dxL

dT
5F22~m2mc!1

n1
2~2g1Ac

2r !Ac
2

a2 S 12e2
a
2sL D 2

2
4n1

2

a S 12e2
a
2sL D 2Gj, ~14!

dxR

dT
512~m2mc!j. ~15!

Combining these results yields the following equations
scribing the evolution of the pulse lengthL5xR2xL and the
velocity of the pulse relative to a frame moving with th
group velocitys in terms of a ‘‘center-of-mass’’ coordinat
M5(xR1xL)/2,

dL

dT
5k1~m2mc!1k2n2S 12e2

a
2s L D

2k3n2S 12e2
a
2s L D 2

, ~16!

dM

dT
5

1

2 F2k2n2S 12e2
a
2s L D1k3n2S 12e2

a
2s L D 2G ,

~17!
7-3



n
a

o

x
h

a

io

-
on

e
gt

tu-

lse

dy-
y

led
half-
rc-
r
up

uan-
-
ied.

at

ob-

a

ob-

roup
ly,

CATHERINE CRAWFORD AND HERMANN RIECKE PHYSICAL REVIEW E65 066307
where k154j, k254j/a, and k35@(2g1Ac
2r )Ac

2j#/a2.
While bothk1 andk2 are always positive,k3 may be either
positive or negative. As will be seen in the following sectio
the sign ofk3 determines whether stable pulse solutions m
exist. The interaction length is given by 2s/a.

III. DISCUSSION OF FRONT EQUATIONS

The possible pulse solutions of Eqs.~16! and ~17! are
more easily discussed in terms of the quantityL[@1
2exp(2aL/2s)#, which monotonically increases from zer
to one asL increases from zero to infinity. Equation~16! is
then given by

1

12L

dL

dT
5 f ~L![k1~m2mc!1k2n2L2k3n2L2.

~18!

Figure 2 depictsf (L) for the two casesm.mc and m
,mc . Fork3.0 the parabola opens downward and the ma
mum occurs atL5k2/2k3, independent of forcing strengt
n. Fixed pointsL0 are indicated wheref (L)50,

L05~12e2(a/2s)L0![

k26Ak2
21

4~m2mc!k1k3

n2

2k3
.

~19!

Pulses withL5L0 are linearly stable iff 8(L0),0. If k3
,0, the parabola is opening upward with the minimum
L5k2/2k3,0 so that f 8(L).0 for all values ofL.0.
Hence for a stable pulse to exist it is necessary thatk3.0
and in this case corresponds to the upper branch of solut
~19!. More precisely, stable pulses exist as long ask3.k2/2
with their length diverging fork3→k2/2. Unless stated oth
erwise the discussion of the front interaction will focus
the regime 0,k2/2k3,1 where a stable branch exists.

From the expression~19! and the parabola in Fig. 2, on
can easily see the effect of forcing on the stable pulse len

FIG. 2. Sketch off (L)[k1(m2mc)1k2n2L2k3n2L2 for k3

.0. Stable~unstable! fixed points are indicated by solid~open!
circles. Varying forcing changes the steepness of the parabola
the height of the maximum located atL5k2/2k3. Increasing forcing
n decreases the stable pulse length for~a! m.mc and increases the
stable pulse length for~b! m,mc .
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As the forcingn increases,f (L50)5 f (L5k2 /k3)5k1(m
2mc) remain fixed while the parabola steepens~see Fig. 2!.
Thus for m.mc the stable pulse length is larger thanLc
corresponding toLc[k2 /k3, but approachesLc as forcing
increases@Fig. 2~a!#. Conversely, form,mc the pulse length
increases toLc with increasingn @Fig. 2~b!#. As forcing n
decreases form.mc , the pulse length increases and even
ally diverges to infinity. In contrast, form,mc decreasing
forcing results in the pulse length decreasing until the pu
is destroyed in a saddle-node bifurcation.

Figure 3 shows both the analytical results for the stea
state solutions of Eq.~16! and numerical results obtained b
integrating the full amplitude Eqs.~2! and ~3!. A linearized
Crank-Nicholson scheme was used to solve the coup
equations and the pulse lengths were measured at
amplitude. The pulse length is plotted as a function of fo
ing strength for several values of the control parametem
confirming the expected behavior. The top figure is for gro
velocity s520.0 and the bottom figure fors51.7. Here we
see that although the analytical result no longer agrees q
titatively for smallers, it still describes the qualitative behav
ior of the pulse length as the control parameters are var
This dependence on the group velocity will be discussed
the end of this section.

A numerical control technique has been employed to

nd

FIG. 3. Dependence of pulse lengthL on the forcing strengthn.
The symbols indicate the numerical results and the curves are
tained from Eq.~19!. The dotted line corresponds tom5mc . The
curves above~below! this line correspond to values ofm.mc (m
,mc). The dashed curves indicate unstable branches. The g
velocity s520 and 1.7 in the top and bottom figures, respective
m521.238 ~solid squares!, 21.2475~open squares!, 21.248 075
5mc ~circles!, 21.2485 ~open triangles!, and 21.250 ~solid tri-
angles!. All other parameters are as in Fig. 4.
7-4
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TUNABLE FRONT INTERACTION AND LOCALIZATION . . . PHYSICAL REVIEW E65 066307
tain the unstable pulse solutions indicated by the long das
curves in Fig. 3. Since the analysis leads to a single ordin
differential equation~16! describing the evolution of a pulse
the dynamics of the pulse length are essentially restricte
a one-dimensional manifold. The control technique is, the
fore, relatively straightforward. Pulse lengths are measu
after evolving Eqs.~2! and~3! over a short time interval and
compared with the measurements taken at the previous
to obtain the direction and rate of growth. This information
then used along with the desired pulse length to adjust
control parameter accordingly. This process is repeated u
a steady-state pulse with the specified length is obtained
Fig. 3, the parameter adjusted to control the length is
forcing strengthn while all other parameters remain fixe
The same technique is also used for varying the control
rameterm @cf. Figs. 8~b!, 9, and 12#.

The different regimes can be understood by looking at
individual interaction terms in Eq.~16! and their origins
from Eq. ~2!. The first term in Eq.~16! is a measure of how
far the control parameterm is from the critical valuemc
where, in the absence of forcing, an isolated front is stati
ary. It provides a ‘‘pressure,’’ which is directed outward f
m.mc and which has to be balanced by the interact
terms. The second and third terms describe the interac
between fronts due to forcing. The second term arises f
the linear coupling betweenA andB introduced by the forc-
ing in Eq. ~2! through whichB excitesA. It, therefore, en-
hances the invasion of the nonlinear state into the lin
state, which corresponds to a repulsive interaction betw
the leading and the trailing front. The third term stems fro
the nonlinear coupling, which fork3.0, suppressesA and,
therefore, weakens the invasion, implying attraction betw
the fronts.

The effect of forcing on a pulse depends on the dista
between the fronts. Since the pulse is traveling to the rig
the amplitudeB is growing spatially to the left. For shor
pulses, therefore,B remains small and the linear couplin
term dominates the interaction implying a repulsive inter
tion. Thus, form,mc the inward ‘‘pressure’’ can be balance
by a repulsive interaction if the pulses are sufficiently sho
With increasing pulse lengths,B reaches larger values at th
trailing front and the nonlinear coupling term gains impo
tance. Thus, in contrast to many other localization mec
nisms, the forcing can induce anattractive interaction that
grows with distance. It is able to balance the outward ‘‘pr
sure’’ for m.mc . In this regime the pulses become shor
with increased forcing. Figure 4 shows two stable pulse
lutions obtained by numerically integrating Eqs.~2! and~3!.
The control parameterm521.240 for the longer pulse an
m521.250 for the shorter pulse. All other parameters
the same for both pulses. Note that the forcingn is the same
for both pulses, yet the amplitudeB has not saturated for th
shorter pulse.

From Eqs.~16! and~17! we see that whendL/dT[0 for
a steady pulseL0, then dM/dT5k1(m2mc)/2. Thus the
pulse velocity in the moving frame is given by the invasi
speed and depends onm. By contrast, in dispersively stabl
pulses the velocity depends on the control parameter o
through the nonlinear gradient terms@27,28#. Strikingly, in
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the asymptotic calculation leading to Eq.~17! the pulse ve-
locity does not depend on the forcingn. Figure 5~a! shows
that the linear dependence onm is in good agreement with
this analytical result, but that the velocity does also depe
on forcing n. We suggest that the discrepancy may be
plained by the effect of the excited counterpropagating w
on the leading front atxR . Since in the weakly nonlinea
regime diffusion is much weaker than advection@for group
velocities ofO(1)#, Bc50 in region IV, which implies that
forcing has no affect on the velocity of the leading front@Eq.
~13!#. However, nonzeroB within this inner region will
slightly alter the velocity of the leading front and cons
quently that of the pulse as a function of forcing. This w
also impact the length of the pulse. For the parameters u
in Fig. 4, note thatB varies slowly in region II whereas i
varies almost as fast asA in region IV suggesting that the
missing contribution is more prevalent at the leading fro
than at the trailing one. Figure 5~b! shows single front ve-
locities for both the leading and trailing front. The curves a
the analytical results obtained from Eq.~13! for single fronts
(L→`) and the symbols indicate numerical results. As e
pected, the velocity of the trailing front is well described b
our analysis, but the velocity of the leading front does d
pend slightly on the forcing. The leading-front velocity the
dictates the velocity of the pulse. For larger group velocitys,
the interaction length 2s/a increases and the separation
the fast and slow spatial scales at the positions of the fro
becomes more distinct, as shown in Fig. 6. Thus we exp
and the numerical results confirm~Fig. 7! that the agreemen
with analytical results~16! and ~17! for pulse length and
velocity improves with increasing group velocitys. For small
forcing n the relative error of the velocity is on the order
the numerical accuracy. We note that the qualitative beha
of the pulse length is consistent even for smaller gro
velocity.

FIG. 4. Numerically obtained long and short stable pulse so
tions, withm.mc andm,mc , respectively. The inset zooms in o
the amplitudeB only. The parameters aren50.2534, s51.7, d
50.05, c52.58, p51.0, g51.4, r 54.0, and m521.244 (m
521.250) for the long~short! pulse. For these parametersmc

521.248 075.
7-5



sult
for

CATHERINE CRAWFORD AND HERMANN RIECKE PHYSICAL REVIEW E65 066307
FIG. 5. ~a! Pulse velocity as a function ofm for forcing n50.3, 0.5, and 0.7. The line shown is obtained from the analytical re
vpulse5k1(m2mc)/21s. ~b! Velocity dependence on forcingn. The solid and open symbols indicate the numerically obtained velocities
the trailing and leading fronts, respectively. The curves give the analytical results. Squares are form521.250 and circles form521.238.
The small symbols show the corresponding numerically obtained pulse velocities. All other parameters are as in Fig. 4.
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IV. HOLES AND MULTIPLE PULSES

The analysis from Sec. II can be applied to other fro
configurations such as hole states and multiple pulses. A
consists of a localized region in which the amplitude of t
pattern is very small and which is surrounded by the nonz
traveling-wave amplitude. In contrast to the hole-type so
tions found in the Ginzburg-Landau equation@35,47#, which
are qualitatively different objects than pulses, the holes to
discussed here are similar to pulses in that they are
compound objects made of two fronts connecting the ba
state with the nonlinear state. As with the pulses, the cen
equation for their description is an evolution equation for
lengthLh of the hole. It is given by

dLh

dT
52k1~m2mc!2k2n2S11e2

umcu
2s LhD

1k3n2S11e2
umcu

s LhD , ~20!

wherek1 , k2, andk3 are defined as before and a stable h
may be possible whenk3.0. Note that the interaction lengt
for holes is now given by 2s/umcu, which is longer than the
interaction length 2s/a for pulses. SolvingdLh /dT50

FIG. 6. AmplitudeB of pulse solutions whens51.25, 5.0, 20.0
indicated by the thick dotted, dashed, and solid lines, respectiv
The amplitudesA are indicated by thin lines and the leading fro
in A is indistinguishable between the different velocities.m
521.2485,n50.29, and all other parameters as in Fig. 4.
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again yields two possible solutionsLh
6 , with the longer hole

unstable and the shorter hole stable. In contrast with
pulses, stable holes thus exist only over a finite range
shorter lengths. The right-hand side is quadratic inLh
5exp(2umcuLh/2s), describing a parabola opening upwar
Although varying forcing now results not only in stretchin
the parabola, but also in shifting it vertically, the variations
hole length again depends on the sign of the first term in
~20!. Whenm,mc , increasing forcing causes stable holes
get shorter, while form.mc the stable hole length will in-
crease. Although the tendency of a hole to grow or shr
with increased forcing depends only on the sign ofm2mc ,
the limiting behavior is different depending on the relati
sizes ofk2 and k3. If k3,k2 then holes exist only form
,mc and asn increases, the hole length goes to zero. Ifk3

.k2/2(A221)'1.2k2, holes exist only form.mc and asn
increases the stable hole length grows and eventually di
pears in a saddle-node bifurcation with the unstable h
Finally, for the intermediate values ofk3, holes exist for
values ofm both above and belowmc . In this case, asn
→`, the hole length approaches the limiting length det
mined whenm5mc .

Figures 8~a! and 8~b! show a stable numerical hole solu
tion and the control parameterm as a function of the hole
length for different values of the forcing. Stable and unsta
solutions are indicated by solid and open symbols, resp
tively. Again, the unstable holes are obtained by means
numerical control technique. First, we note that according
Eq. ~20!, the minimum of these curves should all be at t
same value ofLh , but our numerical results show the min
mum shifted to the right asn increases. The analysis require
thatA vanish in the hole region, but the presence ofB in this
region actually generates small nonzeroA, which in turn
generatesB. Hence, the actual value ofB at the trailing front
is greater than predicted. This suppressesA there and the
trailing front slows down, leading to longer pulses and a sh
of the minimum of the curves to the right as forcingn in-
creases. If the parameters are such that the control param
m can be taken smaller, the basic state is more stron
damped. Hence, within the hole regionA is smaller and the
shift of the curves is less pronounced as seen in Fig. 9. H
c52.58 so thatmc;21.248 as compared toc51.8 in Fig. 8
wheremc;20.608.

ly.
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FIG. 7. ~a! Scaled pulse length and~b! relative error of pulse velocity versus forcingn for s51.25, 5.0, 20.0,m521.2485 and all other
parameters as in Fig. 4.
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Arrays of multiple fronts can be combined to form mu
tiple pulses. For a two-pulse configuration, there are f
inner front regions, which match to five outer regions resu
ing in evolution equations for the distanceL2 between the
pulses as well as the widthsL1 andL3 of the leading and the
trailing pulse, respectively. This is to be contrasted with
description of multipulse solutions in the strongly dispers
case~without forcing!, where the pulse widths can be adi
biatically eliminated in favor of the distance and the pha
difference between the two individual pulses@48#. The three
evolution equations forL1,2,3 are given by

dL1

dT
5k1~m2mc!1k2n2L12k3n2L1

2 , ~21!

dL2

dT
52k1~m2mc!2k2n2L1~11L2!1k3n2L1

2~11L2
2!,

~22!

dL3

dT
5k1~m2mc!1k2n2$L1L21@11L3~L1L221!#%

2k3n2$L1
2L2

21@11L3~L1L221!#2%, ~23!

where theL i are defined in terms ofLi as follows: L1
512exp(2aL1/2s), L25exp(mcL2/2s), and L35exp
(2aL3/2s). Since Eq.~21! for L1 is the same as equatio
06630
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~16!, which describes a single pulse, the leading pulse len
is unaffected by the trailing pulse. But the trailing pul
length depends on both the length of the leading pulse
the distance between the pulses and is typically shorter
the leading pulse. Solving Eqs.~21! and ~23! for the fixed
points L10, L20, L30, it is found thatL10L205k2 /k3 and
L305k3(12L10)/(k32k2). Since L1 increases with in-
creasingL1, andL2 andL3 increase with decreasingL2 and
L3, this suggests that all three lengths will either increase
decrease as the control parametersm andn are varied. The
eigenvaluess i obtained from linearizing Eqs.~21!–~23! in-
dicate thats15s3 and a two-pulse solution may be stab
whenk3 is positive. A stable two-pulse solution is, therefor
expected to exist and be stable whenever a single pulse
ists. However, since the trailing pulse is narrower than
leading pulse, it may become too short and collapse—a
merges in a saddle-node bifurcation with the shorter unsta
pulse—for parameter values where the single pulse is
stable. Numerically, we observe that as the control param
m is decreased all three lengths get shorter and the tra
pulse eventually collapses to zero. Figure 10 shows a st
two-pulse solution superimposed over a single-pulse solu
confirming that the leading-pulse length is unaffected by
trailing pulse.

V. DISPERSION EFFECTS

Waves generally have both linear and nonlinear disp
sion. Hence, the coefficients and the amplitudes in Eqs.~2!
s
FIG. 8. ~a! Numerical hole solution forc51.8, m520.609, andn50.3. ~b! Control parameterm as a function of hole length for variou
values ofn. For c51.8, k3 is in the regime where holes exist for bothm.mc andm,mc . Solid ~open! symbols refer to stable~unstable!
solutions. All other parameters are as in Fig. 4 .
7-7
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and~3! are, in general, complex. In@27,28#, it is shown that
for weak dispersion the interaction between fronts leads
the following type of evolution equation for the length of
pulse,

dL

dt
5k1~m2m̂c!2k4e2L/j1

k5

L
. ~24!

The coefficientsk1 andk4 are positive and contain only th
real part of the original coefficients. The first term is simil
to Eq. ~16! wherem̂c is the value of the control parameter
which a single, isolated front is stationary. Due to the disp
sive terms,m̂c includes a correction compared tomc . The
second term arises as a result of the overlap of the front
the convective amplitude. The term involvingk5 contains the
imaginary parts of the coefficients, so that this term rep
sents the interaction due to dispersion. Whenk5.0, disper-
sion provides a repulsive interaction and can lead to the
istence of stable pulses. Whenm,m̂c two pulse solutions
exist with the longer one being stable.

We now consider the combined effects of forcing and d
persion. Of particular interest is the question whether p
odic forcing can stabilize or destabilize pulses obtained

FIG. 9. Control parameterm as a function of hole length fo
various values ofn. For c52.58, k3 is in the regime where stabl
holes exist only form.mc . Solid ~open! symbols indicate stable
~unstable! solutions. All other parameters are as in Fig. 4.

FIG. 10. Two-pulse solution~thick lines! superimposed over a
single-pulse solution~thin lines! for m521.238, n50.5, and all
other parameters as in Fig. 4.
06630
to

r-

in

-

x-

-
i-
n

the purely dispersive regime. The task of deriving front eq
tions including both dispersion and forcing seems form
dable. It is suggested and validated by the numerical sim
lations below that the relevant aspects of both features m
be modeled by simply adding the two contributions. Th
leads to an equation of the following form for pulses
lengthL:

dL

dT
5k1~m2m̂c!1k2n2~12e2(a/2s)L!2k3n2~12e2(a/2s)L!2

2k4e2L/j1
k5

L
. ~25!

If both dispersion and forcing independently result in
stable pulse, their combined contribution merely enhan
the stability of the pulse. The case of competing contrib
tions is more interesting. Figure 11 is a plot of the cont
parameterm as a function of steady-state pulse lengthsL
from Eq. ~25!. The dashed curve is for dispersion in th
absence of forcing (n50), whereas the solid and dotte
curves indicate the addition of forcing. For a given value
the control parameter indicated by the thin horizontal li
stable equilibrium solutions~positive slope! are given by

FIG. 11. Control parameterm versus steady-state pulse lengt
of Eq. ~25! for dispersion only,n50 ~dashed curve!, and added
forcing, n50.5 ~solid curve!. The solid circles indicate stable solu
tions ~positive slope! and the open circles unstable ones~negative
slope!. ~a! For k5.0 andk2/2k3.1 forcing can eventually destroy
a stable pulse,d50.0110.0i , r 50.0. The inset shows the fou
branches possible for an intermediate value of forcingn50.425.~b!
For k5,0 andk2/2k3,1 increased forcing can lead to stable pul
solutions, d50.0120.01i , r 54.0. All other parameters are th
same:s51.7, c52.4510.2i , p51.0, andg51.4.
7-8
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FIG. 12. The control parameterm versus the pulse lengthL. Stable~unstable! solutions indicated by solid~open! symbols. Top row
~a!–~b! Forcing destroys a dispersively stable pulse (d50.0110.0i and r 50.0). Forcing strengthn50.2 andn50.4 ~inset! in ~a!, andn
50.5 in ~b!. Bottom row~c!–~d! Forcing creates a stable branch (d50.0120.005i andr 54.0). Forcing strengthn50.1 in ~c! n50.2 in ~d!.
All other parameters are the same:s51.7, c52.4510.2i , p51.0, andg51.4.
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solid circles while open circles indicate unstable solutio
~negative slope!. Plotted are both cases,~a! when weak dis-
persion leads to a stable pulse,k5.0, and~b! when it does
not, k5,0. If forcing does not stabilize a pulse (k2/2k3
.1), then increasing forcing pushes the stable branch
solutions downward. There is a competition between the
interactions and four solution branches may exist@Fig. 11~a!
inset#. Eventually, for sufficiently large forcingn the stable
pulse disappears at infinity, leaving only the unstable pu
solution. Similarly, when dispersion does not stabilize
pulse, increasing forcing withk2/2k3,1 can eventually lead
to a stable pulse branch@Fig. 11~b!#.

For largeL, Eq. ~25! is dominated by the dispersive inte
action, which decays only like 1/L, suggesting that the origi
nal, dispersive behavior is recovered for large lengthsL. If
k2/2k3.1 the competition can lead to two additional pulse
one unstable and one stable, for intermediate values of f
ing n @cf. inset of Fig. 11~a!#. For larger forcing, only one
unstable pulse and one long, stable pulse remain. Note
for fixed m and increasingn the stable pulse will still disap
pear at infinity since the branch is being pushed downwa
If the forcing generates a stable pulse, the 1/L-behavior of
the dispersive interaction suggests the existence of a l
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third, unstable pulse@Fig. 11~b!#. Note that according to the
analysis of the dispersive interaction in Ref.@27#, which was
confirmed numerically in Ref.@31#, the power-law behavior
continues only up to a maximal lengthLmax, beyond which
the dispersive interaction decays rapidly. The maximal len
Lmax decreases with increasing dispersion. If forcing dom
nates the interaction for lengths up toLmax, then the long-
length dispersively dominated behavior is no longer expec
for either case depicted in Fig. 11. But it should be pres
for weaker forcing or shorter interaction length.

Figure 12 shows numerical results that confirm the
pected pulse behavior based on Eq.~25!. Plotted are the nu-
merically obtained pulse lengths as a function of the con
parameterm. Stable pulse solutions are indicated by so
symbols and unstable solutions by open symbols. Figu
12~a! and 12~b! show that increased forcing may destroy
dispersively stable pulse. For forcing strengthn50.2, the
forcing is not sufficient to eliminate the stable pulse and b
solution branches are still present. The inset shows an in
mediate value ofn50.4 where four solution branches exi
and Fig. 12~b! shows the pulse lengths for stronger forcin
n50.5, where only the unstable branch remains. Figu
12~c! and 12~d! depict the creation of a stable pulse bran
7-9
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CATHERINE CRAWFORD AND HERMANN RIECKE PHYSICAL REVIEW E65 066307
by increasing forcing strength. Whenn50.1 forcing leads to
a stable branch, but for longer lengths the dispersion do
nates and a third, unstable pulse exists. However, fon
50.2 the forcing succeeds in dominating the interaction
yond Lmax so that the branch remains stable.

VI. CONCLUSIONS

In this paper we have investigated the effect of exter
resonant forcing on the interaction of fronts connecting
stable basic with a stable nonlinear traveling-wave state
arises in a subcritical bifurcation. Localized structures w
described analytically as bound pairs of fronts. The tempo
forcing excites the oppositely traveling wave and provides
additional mode that is sufficient to localize structures. Sin
the forcing constitutes an externally controlled parame
pulses of tunable length can be obtained via this localiza
mechanism. Forcing stabilizes pulses through either a re
sive or anattractiveinteraction between the fronts dependi
on the pulse length. This is in contrast to other localizat
mechanisms in which stable pulses arise only for a repul
interaction @27,28,30#. Multiple pulses with different, but
fixed, lengths and holes are also obtained. In addition,
combined effect of temporal forcing and dispersion has b
investigated. With the inclusion of weak dispersion, the
teraction between fronts can be described qualitatively b
single equation combining the two interaction terms~25!. It
was found that in the dispersive regime forcing can lead
the creation of new pulses or the destruction of pulses
pending on system parameters. The competition between
two interactions determines the number and stability
pulses observed.
et

ci.
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In the regimes investigated here no complex dynamics
the individual pulses have been found. It is known, howev
that both dispersively stabilized pulses as well as pulses
bilized by an advected mode can undergo transitions to c
otic dynamics~e.g.,@49–51#!.

Localized traveling waves in the absence of resonant fo
ing have been observed experimentally, in particular,
binary-mixture convection and electroconvection in nema
liquid crystals. Depending on parameters, the localization
pulses in binary-mixture convection is understood to be d
to dispersion and to the coupling to a slowly decaying, a
vected concentration mode. Since the advection depend
the direction of propagation of the wave, an interesting qu
tion is how the counterpropagating wave excited by a re
nant forcing will affect the pulses that are stabilized by t
concentration mode and how the two localization mec
nisms interact. The origin of the localization of the worms
electroconvection is still being investigated. A Ginzbur
Landau model that includes a coupling to a weakly damp
mode similar to that in the case of binary-mixture convect
has been proposed@36#. By probing the response of th
worms to temporal forcing, insight may be gained into t
relevance of an advected mode in the localized waves.
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