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Tunable front interaction and localization of periodically forced waves
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In systems that exhibit a bistability between nonlinear traveling waves and the basic state, pairs of fronts
connecting these two states can form localized wave pulses whose stability depends on the interaction between
the fronts. We investigate wave pulses within the framework of coupled Ginzburg-Landau equations describing
the traveling-wave amplitudes. We find that the introduction of resonant temporal forcing resutisniabée
mechanism for stabilizing such wave pulses. In contrast to other localization mechanisms the temporal forcing
can achieve localization by a repulsive as well as by an attractive interaction between the fronts. Systems for
which the results are expected to be relevant include binary-mixture convection and electroconvection in
nematic liquid crystals.
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[. INTRODUCTION ning has been suggested as a possible localization mecha-
nism for oscillong 25].

Localized structures have been observed in a range of To understand the traveling-wave pulses in binary-
pattern-forming nonequilibrium systems. One type of local-mixture convection, two mechanisms have been put forward,
ized structure occurs when one pattern is embedded withidispersion[26—28 and the advection of a slowly decaying
another pattern. Examples include the coexisting stationargoncentration mod¢29—32. Within the framework of the
domains of long and short wavelengths observed in Tayloreomplex Ginzburg-Landau equation with strong dispersion,
Couette flow between corotating cylindgs, in Rayleigh-  pulses and holes can be viewed as perturbed bright and dark
Benard convection in narrow slofg], and in parametrically ~solitons of the nonlinear Schinger equatiori33—-35. For
excited waves in ferrofluid§3]. Solitary waves drifting Weak dispersion, pulses have been described as a pair of
through a stationary pattern are found associated with gound fronts. In the absence of dispersion they are unstable.
parity-breaking bifurcation in directional solidificatida], However, dispersion may result in a repulsive interaction be-

the printer instability[5], viscous fingering[6], cellular ~ tween the two fronts and a stable pulse can af&s&28.
flames[7], and Taylor-vortex flow8]. Similarly, the advected mode modifies the interaction be-

In this paper, we investigate a class of localized states ijveen fronts a.”‘?' can also_ provide a.stablhzmg, repulswe
interaction. A similar advective mechanism has been invoked

which the pattern is confined to a small region that is sur- 36] to explain the two-dimensional localized wav@mrms
rounded by the unpatterned state, or vice versa. For exampl P . o -
at have been observed in electroconvection in nematic lig-

solitary standing wavestermed “oscillons” in [9]) have .
. . . uid crystals[16].
be_en observeq in vertically ylbrated g_ranular layers and col- More generally, the coupling of a pattern to an additional
loidal suspensmnﬁl_o]. Logallzed travel!ng waves h_ave peen undampedor weakly dampedmode can lead to its localiza-
observed as one—d|me_nS|ona_1I pulses in binary-fluid mixturegq, [37]. In the drift waves arising from a parity-breaking
[11-1§ and as two-dimensional localized wavéermed i rcation, the local wave number of the underlying pattern
“‘worms” in [16]) in electroconvection of nematic liquid plays the role of the additional modi@8,39. For the oscil-
crystals. lons in vibrated granular media it has been suggested that a
For a general understanding of such structures the mechagoupling of the surface wave to a mode representing the local
nisms that are responsible for their localization are of parheight of the granular layer is importaf0].
ticular interest. A number of different types of localization  For traveling waves it is well known that the external
mechanisms have been identifiéelg.,[17]). To provide a application of a resonant temporal forcing excites the coun-
context for our results we briefly review the main mecha-terpropagating wavé41-43. A natural question is, there-
nisms. fore, whether the counterpropagating wave can play a role
The stable coexistence of domains of long and shorsimilar to the various additional modes mentioned above and
wavelengths can be understood to be due to the instability afan thus lead to the localization of the traveling wave into a
the constant wave number state combined with the conservgulse. Since the temporal forcing is easily controlled exter-
tion of the phasd18-22. Localized patterns can also be nally this localization mechanism would Ibenable
stabilized by a nonadiabatic pinning of the large-scale enve- In this paper we investigate the effect of time-periodic
lope to the underlying small-scale patt¢@8,24]. This pin-  forcing on spatially localized waves that arise in systems
exhibiting a subcritical bifurcation to traveling waves as is,
for instance, the case in binary-mixture convection. We ex-
*Present address: Department of Mathematics, Elmhurst Colleggect the results also to be relevant for the worms observed in
190 Prospect Ave., Elmhurst, IL 60126; email address:electroconvection in nematic liquid crystals.
crawford@elmhurst.edu We first consider the effect of forcing on the interaction of
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fronts in the absence of other localization mechanisms and : A —
show that forcing alone can lead to localized structures. This i
localization mechanism can stabilize pulses with either a re-
pulsive or an attractive interaction. While the interaction il
strength between fronts is usually determined by the system i
parameters, forcing allows the strength to be controlled ex- R
ternally. To focus on the interaction of the fronts due to the
temporal forcing, we start in Sec. Il with two coupled dis- s i
persionless Ginzburg-Landau equations and derive evolution I I I vi v
equations for the fronts. In Sec. Il we discuss the resulting ' !
front equations and compare them with numerical calcula-
tions. Section IV extends the analysis and discussion to in- L
clude holes and multiple pulses. The combined effect of tem-

poral forcing and dispersion is investigated in Sec. V anquol
conclusions are presented in Sec. VI.

FIG. 1. Sketch of a pulse traveling to the rigitis the ampli-

e of the right-traveling wave. Temporal forcing excites the left-
traveling waveB, which grows spatially to the left reaching a maxi-
mum at the trailing front, behind which it decays exponentially.

Il. DERIVATION OF THE FRONT EQUATIONS

Motivated by the pulses observed in binary-mixture con-Nonlinear gradient terms that would also appear in E2p.
vection[11-15 and the worms in electroconvectiph6] we  and(3) to the order considered have also been neglected. In
consider a subcritical bifurcation to traveling waves in a one-order for the bifurcation to be weakly subcritical, the cubic
dimensional system that is parametrically forced. To obtain &oefficients must be small enough to allow a balance with
weakly nonlinear description, physical quantities such as théhe quintic terms.
temperatureZ of the fluid in the midplane in convection, say,  The bifurcation to spatially extended traveling waves in
are expanded in terms of the amplitudesandB, of the left  electroconvection in nematic liquid crystals appears to be
and right traveling waves, supercritical[44]. To explain the observation of worms al-

ready below the onset of spatially extended waves, it has

oo~ been argued that a weakly damped mode is relevant that is
+ B(x,t)ex;{ —|(qcx advected by the wavig6]. Already below threshold such a
mode can lead to the existence of infinitely long worms, i.e.,
to convection structures that are narrow in thdirection,
say, and spatially periodic in thedirection[17,36. They
are expected to arise in a secondary bifurcation off the spa-
wheret andx are the fast time and space coordinates. Thdially extended traveling wavedg5]. Focusing on the dynam-
amplitudesA andB are allowed to vary on a slow time scale ics of the worms in the-direction, the head and the tail of
t and a slow spatial scale. Due to the external periodic the worms can be considered as leading and trailing fronts
forcing e2ve'“et close to twice the Hopf frequency, f[hat connect t_he no_nllnear state, which is str_ongly Iocallz_ed
=2(wp+ €2Q), the expansioril) is chosen in terms of the in the y-direction, with the basm nonconvective ste_tte. It is
forcing frequency. The forcing excites the oppositely travel-'éasonable to expect that Ginzburg-Landau equations for a

ing waves and breaks the time translation symmetry, resylgubcritical bifurcation will capture the qualitative aspects of
ing to lowest order in a linear coupling between the twothese structures. B
wave amplitudes. Using the remaining spatial translation and With the usual scalinge=ex complex Ginzburg-Landau
reflection symmetries of the system, the form of the ampli-equations are obtained in which the growth teus is bal-
tude equations foA andB can be derived41-43. Hence, anced by the diffusive terrdd,,A. For group velocities of
we study the following set of coupled Ginzburg-Landauorder 1 this implies that the tersv,A is inconsistent with
equations as a model describing the system: the rest of the equation, i.e., it is lwwer order. However, by
considering slower spatial scales: €’x, the advective term
GA= —SoA+ €dy0, A+ uA+c|APA—p|A[*A—g|BI*A 54 Ais of the same order gsA, and the diffusive term then
_ 2iRI2A 4 * appears in the rescaled Eq®) and (3) as a higher-order
rIAFBI*A—ulB[*A+vB*, @ correction ofO(€?) as indicated in Eq92) and(3) [46].
We are interested in localized solutions made up of two
bound fronts connecting the basic state with the nonlinear
—r|A]?|B|?B—u|A|*B+ vA*, (3)  state as sketched in Fig. 1. One contribution to the interac-
tion between the fronts arises from their overlap. For large
where the forcing coefficient and the group velocitg are  distances it is small, inducing a wealtractive interaction,
real. All other coefficients may be complex. However, towhich destabilizes pulses. However, since the diffusion is
focus on the interaction of the fronts due to temporal forcingweak [ O(€?)], resulting in steep fronts im, the overlap
the front equations are derived for the case in which all of thébetween the fronts is of higher order énand the associated
coefficients are real, i.e., neglecting dispersion and detuningnteraction can be ignored. Hence, the interaction between

oo

qC’)z_ 2

T= 61’2[ A(x,t)exp[i

w
+—t

5 +c.c+ (higher—order termg e<1, (1

B=+sd,B+ EZdZ&xxB+#B+ClB|ZB_ p|B|4B—g|A|ZB
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the fronts is dominated by the presence of the oppositelwhere A2 and » are defined above. Equatiq0) implies

traveling wave excited by the periodic forcing. The smallthat B; does not depend on the fast space variaflé.e.,
diffusion coefficient causes internal layers to arise at the pOBlth V' is constant in regions 1l and IV. AD(e), no

sitions of the fronts. The two bound fronts are then diVidedinhomogeneity arises in the equation mf! which is, there-
into the five regions sketched in Fig. 1, whegeandXg give  fore, taken to be identically 0. But &(e?) the following

the positions of the left and right fronts. Within regions I, lll, equation forA, is obtained:

and V the amplitude oA is constant. Regions Il and IV are

regions of rapid change where the dynamics of the fronts are _dx R 2 302
determined. The internal layers have a widtkh= O(¢), im- 2= F g7 InPo™ H2Aot BIAG T ITAGBT — v1By,

plying Ax= e 2Ax=0O(e" 1), which is still large relative to (12
the critical wavelength of the traveling waves. 2 4. . .
We consider the forcing to be small= (), so that the ~WNereL=dad,,+ uc+3cAg—5pAq is the linearized opera-

corresponding amplitudB of the left-traveling wave that is (©r- It iS singular and has the zero-eigenmageA,, which

excited by the forcing is of the same orderdnThe ampli- Iea(_js to a solvability condition fo_r Eq12). The reSL_JIt of

tudes and the parametersand v are expanded as projecting Eq.(12 onto the zero eigenmode determines the
velocity of the fronts in regions Il and 1V,

A=Ag+eA+---, B=eB,+---, (4) 41/18""\/
C

Ac

thL’R

, =| —2uc+(2g+AI)(BY )2~
M=t € urt e, v=€vyt-- -, (13)
where u.= — 3¢?/16p is the value of the control parameter with B" "V yet undetermined.
at which a single, noninteracting front is stationary. For SingeB is generated byA, we consider the case where
> the nonlinear convective state invades the basic statg;_ § ghead of the pulsé.e., for a right-traveling pulse re-
In the following derivation we go into a reference frame yio v/ whereA=0). This.irﬁ,plies thak V=0 from Eq.(8).
moving with the group velocitg. The positiong andx, of N5\ matching the inner and outer solutions Bat the left
the right and left fronts evolve then on a slow time scéle and right positionsx, andxg) of the fronts, one obtains the

=&t Il \%
. . . constant valueB.=(v,A./a)[1—exp(—al/2s)] and B
Inserting the expansior(d) and(5) into Egs.(2) and(3) =0.The constaniK'(aéch"' )aEre nonpz(ero and)g/ve see ?‘rom

we obtain at leading-order equations foandB in the outer Eq. (8) that B grows spatially to the left in region Il and

regions I, IIl, and V, approaches the limiting value,A./«. Then, in region |, in
which A again equals 0B decays exponentially to zero. The
individual front velocities are given by substituting the val-
ues of B\ into the expressions given in EL3)

0= Ao+ CAS—pAS, 6)

OZZS&XB]_"'ILLCB]_JF Vle—gAgBl—uAéBl. (7)

. . . : 5 dx v2(2g+ AZr)AZ a2
Solving Eq.(6) results inAg=0 in regions | and V and\j 9T —2(p— o)+ —— | 1-e 25t
=A§E3c/4p in region lll. The corresponding solution to «

Eq.(7) is
q ( ) 4vi _iL 2
——|1-e 25| |§, (14
j Y1 ] i a(ali2s)x a
Bi(x)=—Ap+Kle : 8
Pr_ 2 15
where | corresponds to the regions I, Ill, and V and ar -~ TAeTré (15
= — petg(Ap)+u(Ap)™.

In the inner regions I and IV, the solutions vary on a fastC0mpining these results yields the following equations de-
space scala/e, which is captured by introducing the inner SCrPing the evolution of the pulse length=xz—x,_and the
coordinatesy = (x—x,)/e and 7= (xg—X)/¢, respectively. velocity of t.he pulse relative to a frame moving Wlt.h the
The spatial derivative then transforms @s—+ 4, /e. The group velocitys in terms of a “center-of-mass” coordinate

resulting leading-order equations fArandB are M=(Xr+x.)/2,
dL

OZdZannAO+McAO+CA8_pA(5)1 (9) d_-r:kl(lu’_lu’c)-‘rkZVz(l_e_%L)

0=*+2sd,B;. (10 w2
7 —k3vz(l—ez_3|‘) , (16)
From Eq.(9) one obtains the left and right front solution

2
am _1 1o it

L 4 [pd ——[—k Vz(l—e%L>+k 22 ,
Ao(m)=Ac §1+tanl‘(g”, £=- %, (11) dT 2| 2 3 o
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FIG. 2. Sketch off (A)=k;(u— ue) + Kov?A —kzv?A? for kg
>0. Stable(unstable fixed points are indicated by solitbpen
circles. Varying forcing changes the steepness of the parabola an_; 6.0
the height of the maximum located a&t=k,/2k,. Increasing forcing
v decreases the stable pulse length(8®ru> u. and increases the
stable pulse length foib) w< ..

Pulse Length
[ =Y
=

where k;=4¢, k,=4¢/a, and ky=[(2g+A2r)AZ¢]/ o?.
While bothk; andk, are always positivek; may be either
positive or negative. As will be seen in the following section,
the sign ofk; determines whether stable pulse solutions may
exist. The interaction length is given bys/2v.

g
=

0.0

0.4
Forcing Strength v

FIG. 3. Dependence of pulse lendtron the forcing strengthy.
The symbols indicate the numerical results and the curves are ob-
tained from Eq.(19). The dotted line corresponds jo=u.. The
curves abovebelow) this line correspond to values @f>u. (u
<u.). The dashed curves indicate unstable branches. The group
velocity s=20 and 1.7 in the top and bottom figures, respectively,
u=—1.238(solid squares —1.2475(open squargs —1.248 075
= u. (circles, —1.2485 (open triangles and —1.250 (solid tri-
angles$. All other parameters are as in Fig. 4.

Ill. DISCUSSION OF FRONT EQUATIONS

The possible pulse solutions of Eqd.6) and (17) are
more easily discussed in terms of the quantity=[1
—exp(—al/2s)], which monotonically increases from zero
to one ad increases from zero to infinity. Equatigh6) is
then given by

1 dA
Tox a7 = (M=Kl —pe) +kor?A—kg?AZ. As the forcing increasesf(A=0)=f(A =k, /ks)=ky(u
— ) remain fixed while the parabola steepésse Fig. 2.
Thus for u> u. the stable pulse length is larger than
Figure 2 depictsf(A) for the two casesu>u. and u corresponding to\ .=k, /ks, but approacheg . as forcing
< .. Forks>0 the parabola opens downward and the maxiincreases$Fig. 2@]. Conversely, for< . the pulse length
mum occurs at\ =k,/2ks, independent of forcing strength increases td.. with increasingv [Fig. 2(b)]. As forcing »
v. Fixed pointsA, are indicated wher¢(A)=0, decreases fou> u., the pulse length increases and eventu-
ally diverges to infinity. In contrast, for<u. decreasing
A pu— o) KiKs forcing results in the pulse length decreasing until the pulse
kot \/ Ko+ —_— is destroyed in a saddle-node bifurcation.
4 Figure 3 shows both the analytical results for the steady-
' state solutions of Eq16) and numerical results obtained by
integrating the full amplitude Eq$2) and (3). A linearized
Crank-Nicholson scheme was used to solve the coupled
Pulses withA=A, are linearly stable iff'(Ao)<0. If k3 equations and the pulse lengths were measured at half-
<0, the parabola is opening upward with the minimum atamplitude. The pulse length is plotted as a function of forc-

(18)

AOZ (1_ e—(a//ZS)LO)E

2K
(19

A=k,/2k;<0 so thatf’(A)>0 for all values of A>0.
Hence for a stable pulse to exist it is necessary k3at0
and in this case corresponds to the upper branch of solutionglocity s=20.0 and the bottom figure fa=1.7. Here we
(19). More precisely, stable pulses exist as longkgs k,/2
with their length diverging fok;—k,/2. Unless stated oth- titatively for smallers, it still describes the qualitative behav-

erwise the discussion of the front interaction will focus onior of the pulse length as the control parameters are varied.
the regime 6<k,/2k;<1 where a stable branch exists.

From the expressiofil9) and the parabola in Fig. 2, one the end of this section.
can easily see the effect of forcing on the stable pulse length. A numerical control technique has been employed to ob-

ing strength for several values of the control parameter
confirming the expected behavior. The top figure is for group

see that although the analytical result no longer agrees quan-

This dependence on the group velocity will be discussed at
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tain the unstable pulse solutions indicated by the long dashe: 1.5 . . , . :

curves in Fig. 3. Since the analysis leads to a single ordinary

differential equatior(16) describing the evolution of a pulse, 040 'I' T3] H ' A |
the dynamics of the pulse length are essentially restricted tc :x Z \ \ E

a one-dimensional manifold. The control technique is, there— 1.0 b F /\ 1] |
fore, relatively straightforward. Pulse lengths are measurec-c * 0,02 ]

after evolving Eqs(2) and(3) over a short time interval and E J J

0.00
150 200 250 300 35.0
compared with the measurements taken at the previous t|m—' r

to obtain the direction and rate of growth. This information is E
then used along with the desired pulse length to adjust the€ (.5
control parameter accordingly. This process is repeated unti
a steady-state pulse with the specified length is obtained. Ir
Fig. 3, the parameter adjusted to control the length is the
forcing strengthv while all other parameters remain fixed. 0.0 - — e~
The same technique is also used for varying the control pa: A '
rameteru [cf. Figs. 8b), 9, and 12. 15.0 20.0 25.0 30.0 35.0
The different regimes can be understood by looking at the X
individual interaction terms in Eq(16) and their origins
from Eq.(2). The first term in Eq(16) is a measure of how
far the control parametewr is from the critical valueu,
where, in the absence of forcmg an isolated front is statlon_o 05, c=2.58, p=1.0, g=14, r=4.0, and u= - 1.244 (u
ary. It provides a “pressure, " which is directed outward for _ ", 250) for the long(shord pulse. For these parameters,
pn>u. and which has to be balanced by the |nteract|on:_l_248075.
terms. The second and third terms describe the interaction
between fronts due to forcing. The second term arises fronthe asymptotic calculation leading to Ed.7) the pulse ve-
the linear coupling betweeA andB introduced by the forc- |ocity does not depend on the forcing Figure %a) shows
ing in Eq. (2) through whichB excitesA. It, therefore, en-  that the linear dependence gnis in good agreement with
hances the invasion of the nonlinear state into the lineathis analytical result, but that the velocity does also depend
state, which corresponds to a repulsive interaction betweesn forcing v. We suggest that the discrepancy may be ex-
the leading and the trailing front. The third term stems fromplained by the effect of the excited counterpropagating wave
the nonlinear coupling, which fdk;>0, suppressed and, on the leading front akg. Since in the weakly nonlinear
therefore, weakens the invasion, implying attraction betweeregime diffusion is much weaker than advectidor group
the fronts. velocities of O(1)], B,=0 in region IV, which implies that
The effect of forcing on a pulse depends on the distancgorcing has no affect on the velocity of the leading frpig.
between the fronts. Since the pulse is traveling to the right{13)]. However, nonzerdB within this inner region will
the amplitudeB is growing spatially to the left. For short sjightly alter the velocity of the leading front and conse-
pulses, thereforeB remains small and the linear coupling quently that of the pulse as a function of forcing. This will
term dominates the interaction implying a repulsive interac-also impact the length of the pulse. For the parameters used
tion. Thus, foru < u. the inward “pressure” can be balanced in Fig. 4, note thaB varies slowly in region Il whereas it
by a repulsive interaction if the pulses are sufficiently shortvaries almost as fast as in region IV suggesting that the
With increasing pulse lengthB reaches larger values at the missing contribution is more prevalent at the leading front
trailing front and the nonlinear coupling term gains impor-than at the trailing one. Figure( shows single front ve-
tance. Thus, in contrast to many other localization mechatocities for both the leading and trailing front. The curves are
nisms, the forcing can induce attractive interaction that  the analytical results obtained from E@G3) for single fronts
grows with distance. It is able to balance the outward “pres{L—o) and the symbols indicate numerical results. As ex-
sure” for u>u.. In this regime the pulses become shorterpected, the velocity of the trailing front is well described by
with increased forcing. Figure 4 shows two stable pulse soour analysis, but the velocity of the leading front does de-
lutions obtained by numerically integrating Eq®) and(3).  pend slightly on the forcing. The leading-front velocity then
The control parametern = —1.240 for the longer pulse and dictates the velocity of the pulse. For larger group velosity
wu=—1.250 for the shorter pulse. All other parameters arehe interaction length €« increases and the separation of
the same for both pulses. Note that the forcinig the same the fast and slow spatial scales at the positions of the fronts
for both pulses, yet the amplitud®has not saturated for the becomes more distinct, as shown in Fig. 6. Thus we expect
shorter pulse. and the numerical results confirfRig. 7) that the agreement
From Egs.(16) and(17) we see that whedL/dT=0 for  with analytical results(16) and (17) for pulse length and
a steady pulsd_g, then dM/dT=Kky(n—uc)/2. Thus the velocity improves with increasing group velociyFor small
pulse velocity in the moving frame is given by the invasionforcing v the relative error of the velocity is on the order of
speed and depends @n By contrast, in dispersively stable the numerical accuracy. We note that the qualitative behavior
pulses the velocity depends on the control parameter onlgf the pulse length is consistent even for smaller group
through the nonlinear gradient terrfid7,28. Strikingly, in  velocity.

FIG. 4. Numerically obtained long and short stable pulse solu-
tions, with u>u, and u< pu., respectively. The inset zooms in on
the amplitudeB only. The parameters are=0.2534,s=1.7, d
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FIG. 5. (a) Pulse velocity as a function qf for forcing v=0.3, 0.5, and 0.7. The line shown is obtained from the analytical result
Upuise= K1(— ue)/2+s. (b) Velocity dependence on forcing The solid and open symbols indicate the numerically obtained velocities for
the trailing and leading fronts, respectively. The curves give the analytical results. Squaresare-fdr250 and circles fop= —1.238.

The small symbols show the corresponding numerically obtained pulse velocities. All other parameters are as in Fig. 4.

IV. HOLES AND MULTIPLE PULSES again yields two possible solutiohs, , with the longer hole
The analysis from Sec. Il can be applied to other frontunstable and the shorter hole stable. In contrast with the

configurations such as hole states and multiple pulses AhoPUIseS’ stable holes thus exist only over a finite range of
9 piep : Shorter lengths. The right-hand side is quadratic AR

consists of a localized region in which the amplitude of the_ exp(|uLi/25), describing a parabola opening upward.

pattern is very small and which is surrounded by the nonzerq\i,q,,qh varying forcing now results not only in stretching
traveling-wave amplitude. In contrast to the hole-type soluthe parahola, but also in shifting it vertically, the variations in
tions found in the Ginzburg-Landau equati®$,47, which e length again depends on the sign of the first term in Eq.
are qualitatively dlffere'nt'objects than pylses, the holes to b?ZO). Whenu < u., increasing forcing causes stable holes to
discussed her_e are similar to pulses in that t_hey are a'?@et shorter, while fop™> . the stable hole length will in-
compound objects made of two fronts connecting the basigrease. Although the tendency of a hole to grow or shrink
state with the nonlinear state. As with the pulses, the centralith increased forcing depends only on the signuof .,
equation for their description is an evolution equation for thethe limiting behavior is different depending on the relative

lengthLy, of the hole. It is given by sizes ofk, and k. If ky<k, then holes exist only fou
] <u. and asv increases, the hole length goes to zerd,lf
Mc H
din _ —kl(M—Mc)—kzvz( 1+e*‘2?Lh) >Kk,/2(y2—1)~1.%,, holes exist only fop> u. and asv

dT increases the stable hole length grows and eventually disap-
, e pears in a saddle-node bifurcation with the unstable hole.
+k3v2(1+e‘TLh), (200  Finally, for the intermediate values d&f, holes exist for

values of u both above and beloy.. In this case, as

whereky, ky, andk; are defined as before and a stable hole—, the hole length approaches the limiting length deter-
may be possible wheks>0. Note that the interaction length mined whenu = u. .
for holes is now given by &| x|, which is longer than the Figures 8a) and 8b) show a stable numerical hole solu-

interaction length &« for pulses. SolvingdL,/dT=0 tion and the control parameter as a function of the hole
length for different values of the forcing. Stable and unstable

solutions are indicated by solid and open symbols, respec-
tively. Again, the unstable holes are obtained by means of a
numerical control technique. First, we note that according to
Eq. (20), the minimum of these curves should all be at the
same value of},, but our numerical results show the mini-
mum shifted to the right as increases. The analysis requires
thatA vanish in the hole region, but the presencéan this
region actually generates small nonzekp which in turn
generate®. Hence, the actual value &fat the trailing front
is greater than predicted. This suppresgethere and the
0.00_~ trailing front slows down, leading to longer pulses and a shift

50.0 60.0 : of the minimum of the curves to the right as forcimgin-

* creases. If the parameters are such that the control parameter

FIG. 6. AmplitudeB of pulse solutions whes=1.25, 5.0, 20.0 4 can be taken smaller, the basic state is more strongly
indicated by the thick dotted, dashed, and solid lines, respectivelyfdamped. Hence, within the hole regidnis smaller and the
The amplitudesA are indicated by thin lines and the leading front shift of the curves is less pronounced as seen in Fig. 9. Here
in A is indistinguishable between the different velocitigs. €= 2.58 so thaju.~ —1.248 as compared t=1.8 in Fig. 8
=—1.2485,r=0.29, and all other parameters as in Fig. 4. where u.~ —0.608.

0.10

0.05

Amplitude
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FIG. 7. (a) Scaled pulse length ar(8) relative error of pulse velocity versus forcingfor s=1.25, 5.0, 20.0p.= — 1.2485 and all other
parameters as in Fig. 4.

Arrays of multiple fronts can be combined to form mul- (16), which describes a single pulse, the leading pulse length
tiple pulses. For a two-pulse configuration, there are fouis unaffected by the trailing pulse. But the trailing pulse
inner front regions, which match to five outer regions resultlength depends on both the length of the leading pulse and
ing in evolution equations for the distantg between the the distance between the pulses and is typically shorter than
pulses as well as the widths andL ; of the leading and the the leading pulse. Solving Eq&21) and (23) for the fixed
trailing pulse, respectively. This is to be contrasted with theP0iNtS Ao, Ao, Ago, it is found thatA oA 0=k, /k; and
description of multipulse solutions in the strongly dispersive/\so=Ka(1—A10)/(ks—kz). Since L, increases with in-
case(without forcing, where the pulse widths can be adia- Cr€asingAs, andL, andL; increase with decreasingy, and
biatically eliminated in favor of the distance and the phase® s this suggests that all three lengths will either increase or
difference between the two individual puldess]. The three g%ﬂﬁggﬁ ::T tgitg?r?églfr%?wrﬁm?:rzgﬂg VEggez\ll)arégg). i-lr-1he
evolution equations fot; , 3 are given by dicate that(71|= o3 and a two-pulse solution may be stable
dL, whenk; is positive. A stable two-pulse solution is, therefore,
ﬁ=k1(,u,—,u,c)+k21/2A1—k3V2A2, (21 expected to exist and be stable whenever a single pulse ex-

ists. However, since the trailing pulse is narrower than the
leading pulse, it may become too short and collapse—as it

dL, 2 272 2 merges in a saddle-node bifurcation with the shorter unstable
ot - Kl o) TkerTAg (1 Ag) TherPAL(LF A), pulse—for parameter values where the single pulse is still
(22 stable. Numerically, we observe that as the control parameter
wn is decreased all three lengths get shorter and the trailing
dLs ) pulse eventually collapses to zero. Figure 10 shows a stable
a7~ Kalr = me) Ther A A+ 14 Ag(Ay A= 1)1} two-pulse solution superimposed over a single-pulse solution
confirming that the leading-pulse length is unaffected by the
—kar{ATAZ+H[1+ A5(A1A,— D], (23 trailing pulse.

where theA,; are defined in terms of; as follows: A, V. DISPERSION EFFECTS

=1-exp(-aly/2s), A,=explucl,/2s), and Az=exp Waves generally have both linear and nonlinear disper-
(—aly/2s). Since Eq.(21) for L, is the same as equation sion. Hence, the coefficients and the amplitudes in E?s.

1.2 T T T T T T T
[ 1 r 4 *—ev-o1
10 r A ) L .0.595 - m—v-03 .
PR L % A—AV=05
=
go8r 1§
a2 | &
g 05 - . = -0.605
< L E G 4
=
0.2 —_ B _ L _—_ 6 A
0.0 TN -0.615 | ‘ , ‘ , . A
35.0 45.0 55.0 65.0 0.0 5.0 10.0 15.0 20.0
X Hole Length

FIG. 8. (8 Numerical hole solution foc=1.8, u=—0.609, andv=0.3.(b) Control parametet. as a function of hole length for various
values ofv. Forc=1.8, kj is in the regime where holes exist for bait> u. and u<pu.. Solid (open symbols refer to stablaunstable
solutions. All other parameters are as in Fig. 4 .
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FIG. 9. Control parameten. as a function of hole length for -1.14
various values ob. Forc=2.58, k5 is in the regime where stable 5,
holes exist only foru> u.. Solid (open symbols indicate stable &
(unstable solutions. All other parameters are as in Fig. 4. g 115
<
. . |
and(3) are, in general, complex. [i27,2§, it is shown that £

for weak dispersion the interaction between fronts leads tc
the following type of evolution equation for the length of a
pulse,

-1L.16

rol

Cont

- _e . Ks 0 2 4
v Ki(p— o) —kye te T (24) Pulse Length L
FIG. 11. Control parametex versus steady-state pulse lengths
The coefficientk; andk, are positive and contain only the of Eq. (25) for dispersion only,y=0 (dashed curye and added
real part of the original coefficients. The first term is similar forcing, »=0.5 (solid curve. The solid circles indicate stable solu-
to Eq.(16) where, is the value of the control parameter at tions (positive slopg and the open circles unstable orlegative
which a single, isolated front is stationary. Due to the disperslope. () Forks>0 andk,/2k;>1 forcing can eventually destroy

sive terms, . includes a correction compared to,. The 2 Stable pulsed=0.01+0.0/, r=0.0. The inset shows the four
second term arises as a result of the overlap of the fronts iﬁramhes possible for an intermediate \.’alue of foraing).425.(b)
the convective amplitude. The term involvikg contains the orks=0 andk,/2ks=1 increased forcing can lead to stable pulse

solutions, d=0.01-0.01, r=4.0. All other parameters are the
imaginary parts of the coefficients, so that this term rePreyame:s=1.7, c=2.45+ 0.9, p=1.0, andg=1.4.

sents the interaction due to dispersion. Wikek-0, disper-

sion provides a repulsive interaction and can lead to the exy,o purely dispersive regime. The task of deriving front equa-
istence of stable pulses. When< . two pulse solutions tions including both dispersion and forcing seems formi-
exist with the longer one being stable. dable. It is suggested and validated by the numerical simu-
We now consider the combined effects of forcing and disqations below that the relevant aspects of both features may
perSion. Of partiCUIar interest is the question whether peribe modeled by S|mp|y add|ng the two contributions. This
odic forcing can stabilize or destabilize pulses obtained ineads to an equation of the following form for pulses of

lengthL:
1-5 T T T T T T T
A dL - —(a —(a
ﬂ ﬂ | 7= K o) +erA(1— e (029 —kgp(1—e (@2

v 1.0 | . K

E — ke Vet {. (25

E

< 0.5 - If both dispersion and forcing independently result in a
stable pulse, their combined contribution merely enhances
the stability of the pulse. The case of competing contribu-
tions is more interesting. Figure 11 is a plot of the control

0.0 — ;
parametern as a function of steady-state pulse lengths
150 2040 254 il el from Eq. (25. The dashed curve is for dispersion in the
absence of forcing ¥=0), whereas the solid and dotted
FIG. 10. Two-pulse solutiofithick lines superimposed over a curves indicate the addition of forcing. For a given value of
single-pulse solutiorithin lines for u=—1.238, »=0.5, and all  the control parameter indicated by the thin horizontal line
other parameters as in Fig. 4. stable equilibrium solutiongpositive slopg are given by

X
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FIG. 12. The control parameter versus the pulse length. Stable(unstablg solutions indicated by solifopen symbols. Top row
(a)—(b) Forcing destroys a dispersively stable pulge=0.01+ 0.0 andr =0.0). Forcing strengttv=0.2 andv=0.4 (inse} in (a), andv
=0.5 in(b). Bottom row(c)—(d) Forcing creates a stable branah=(0.01-0.005 andr =4.0). Forcing strengtlr=0.1 in(c) »=0.2 in(d).
All other parameters are the sanse: 1.7, c=2.45+0.2, p=1.0, andg=1.4.

solid circles while open circles indicate unstable solutionghird, unstable pulséFig. 11(b)]. Note that according to the
(negative slope Plotted are both case&®) when weak dis- analysis of the dispersive interaction in Rgf7], which was
persion leads to a stable pulde>0, and(b) when it does confirmed numerically in Ref.31], the power-law behavior
not, ks<<0. If forcing does not stabilize a puls&kf{2k;  continues only up to a maximal length, ., beyond which
>1), then increasing forcing pushes the stable branch athe dispersive interaction decays rapidly. The maximal length
solutions downward. There is a competition between the twa ., decreases with increasing dispersion. If forcing domi-
interactions and four solution branches may ej#sty. 11(a) nates the interaction for lengths up lt,,,, then the long-
insef. Eventually, for sufficiently large forcing the stable length dispersively dominated behavior is no longer expected
pulse disappears at infinity, leaving only the unstable pulséor either case depicted in Fig. 11. But it should be present
solution. Similarly, when dispersion does not stabilize thefor weaker forcing or shorter interaction length.
pulse, increasing forcing withk,/2k;<<1 can eventually lead Figure 12 shows numerical results that confirm the ex-
to a stable pulse brandlrig. 11(b)]. pected pulse behavior based on E2p). Plotted are the nu-
For largeL, Eq.(25) is dominated by the dispersive inter- merically obtained pulse lengths as a function of the control
action, which decays only like [L/ suggesting that the origi- parameterw. Stable pulse solutions are indicated by solid
nal, dispersive behavior is recovered for large lendthf  symbols and unstable solutions by open symbols. Figures
k,/2k;>1 the competition can lead to two additional pulses,12(a) and 12b) show that increased forcing may destroy a
one unstable and one stable, for intermediate values of fordispersively stable pulse. For forcing strength 0.2, the
ing v [cf. inset of Fig. 11a)]. For larger forcing, only one forcing is not sufficient to eliminate the stable pulse and both
unstable pulse and one long, stable pulse remain. Note thablution branches are still present. The inset shows an inter-
for fixed w and increasing’ the stable pulse will still disap- mediate value of»=0.4 where four solution branches exist
pear at infinity since the branch is being pushed downwardand Fig. 12b) shows the pulse lengths for stronger forcing
If the forcing generates a stable pulse, the-tkehavior of »=0.5, where only the unstable branch remains. Figures
the dispersive interaction suggests the existence of a lond,2(c) and 12d) depict the creation of a stable pulse branch
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by increasing forcing strength. When=0.1 forcing leads to In the regimes investigated here no complex dynamics of
a stable branch, but for longer lengths the dispersion domithe individual pulses have been found. It is known, however,

nates and a third, unstable pulse exists. However, ifor that both dispersively stabilized pulses as well as pulses sta-
=0.2 the forcing succeeds in dominating the interaction bebilized by an advected mode can undergo transitions to cha-

yond L 4, SO that the branch remains stable. otic dynamics(e.g.,[49-51]).
Localized traveling waves in the absence of resonant forc-
VI. CONCLUSIONS ing have been observed experimentally, in particular, in

) ) ) binary-mixture convection and electroconvection in nematic
In this paper we have investigated the effect of externaliquid crystals. Depending on parameters, the localization of
resonant forcing on the interaction of fronts connecting theyuises in binary-mixture convection is understood to be due
stable basic with a stable nonlinear traveling-wave state thap dispersion and to the coupling to a slowly decaying, ad-
arises in a subcritical bifurcation. Localized structures wergected concentration mode. Since the advection depends on
described analytically as bound pairs of fronts. The temporajhe direction of propagation of the wave, an interesting ques-
forcing excites the oppositely traveling wave and provides afion is how the counterpropagating wave excited by a reso-
additional mode that is sufficient to localize structures. Sincg,gnt forcing will affect the pulses that are stabilized by the
the forcing constitutes an externally controlled parametergoncentration mode and how the two localization mecha-
pulses of tunable length can be obtained via this localizatiomisms interact. The origin of the localization of the worms in
mechanism. Forcing stabilizes pulses through either a repuklectroconvection is still being investigated. A Ginzburg-
sive or anattractiveinteraction between the fronts depending | andau model that includes a coupling to a weakly damped
on the pulse length. This is in contrast to other localizationmode similar to that in the case of binary-mixture convection
mechanisms in which stable pulses arise Only for a repU|S|VﬂaS been proposeEBG]_ By probing the response of the
interaction [27,28,30. Multiple pulses with different, but \worms to temporal forcing, insight may be gained into the

fixed, lengths and holes are also obtained. In addition, theelevance of an advected mode in the localized waves.
combined effect of temporal forcing and dispersion has been
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